The long time behavior and the rate of convergence of symplectic convex algorithms obtained via splitting discretizations of inertial damping systems

arXiv:2001.10831 (2020) .

arXiv:2001.10831

Abstract

In this paper we propose new numerical algorithms in the setting of unconstrained optimization problems and we study the rate of convergence in the iterates of the objective function. Furthermore, our algorithms are based upon splitting and symplectic methods and they preserve the energy properties of the inherent continuous dynamical system that contains a Hessian perturbation. At the same time, we show that Nesterov gradient method is equivalent to a Lie-Trotter splitting applied to a Hessian driven damping system. Finally, some numerical experiments are presented in order to validate the theoretical results.



Add your rating and review

If all scientific publications that you have read were ranked according to their scientific quality and importance from 0% (worst) to 100% (best), where would you place this publication? Please rate by selecting a range.


0% - 100%

This publication ranks between % and % of publications that I have read in terms of scientific quality and importance.


Keep my rating and review anonymous
Show publicly that I gave the rating and I wrote the review



Notice: Undefined index: publicationsCaching in /www/html/epistemio/application/controllers/PublicationController.php on line 2240