Spiking neural controllers for pushing objects around

From Animals to Animats 9, Lecture Notes in Computer Science. Berlin / Heidelberg: Springer (2006) .

Springer

Abstract

We evolve spiking neural networks that implement a seek-push-release drive for a simple simulated agent interacting with objects. The evolved agents display minimally-cognitive behavior, by switching as a function of context between the three sub-behaviors and by being able to discriminate relative object size. The neural controllers have either static synapses or synapses featuring spike-timing-dependent plasticity (STDP). Both types of networks are able to solve the task with similar efficacy, but networks with plastic synapses evolved faster. In the evolved networks, plasticity plays a minor role during the interaction with the environment and is used mostly to tune synapses when networks start to function.



Add your rating and review

If all scientific publications that you have read were ranked according to their scientific quality and importance from 0% (worst) to 100% (best), where would you place this publication? Please rate by selecting a range.


0% - 100%

This publication ranks between % and % of publications that I have read in terms of scientific quality and importance.


Keep my rating and review anonymous
Show publicly that I gave the rating and I wrote the review



Notice: Undefined index: publicationsCaching in /www/html/epistemio/application/controllers/PublicationController.php on line 2240