Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
Mahendra Kumar Trivedi, Shrikant Patil, Harish Shettigar, Khemraj Bairwa, Snehasis Jana
Full text: http://dx.doi.org/10.4172/2161-0444.1000283
Abstract
Metronidazole and tinidazole are widely used antimicrobial drugs against Gram-negative and Gram-positive anaerobic bacteria. The present study was aimed to evaluate the impact of biofield treatment on metronidazole and tinidazole using FT-IR and UV spectroscopy. The study was carried out in two groups i.e. control and treatment. Treatment groups were subjected to Mr. Trivedi’s biofield treatment while no treatment was given to control group. FT-IR spectrum of treated metronidazole showed the impact of biofield treatment on frequency of characteristic functional groups such as C=C (imidazole ring) stretching was appeared at lower frequency i.e. from 1600 cm-1 to 1553 cm-1. Likewise, NO2 asymmetric stretching and C-N symmetric stretching were appeared at higher wave number i.e. 1479 cm-1 to 1501 cm-1 and 1070 cm-1 to 1077 cm-1, respectively. FT-IR spectrum of tinidazole showed shifting in absorption peak of C-N stretching to higher wavenumber from 1002 cm-1 (control) to 1022 cm-1. The wavenumber of aromatic C=C bond (in imidazole) was shifted to lower frequency, which could be due to increases in conjugation effect. Further, increases in wavenumber of NO2 and C-N in treated sample suggested the increased force constant and bond strength as compared to control. Because of higher conjugation effect and increased bond strength, the molecule supposed to be more stable. The UV spectra of both metronidazole and tinidazole showed the similar patterns of lambda max (λmax) with respect to their control. The FT-IR results of both drugs suggest that there was an impact of biofield treatment on atomic level of metronidazole and tinidazole, as compared to control.
Notice: Undefined index: publicationsCaching in /www/html/epistemio/application/controllers/PublicationController.php on line 2240
Share comment