The evolution of learning algorithms for artificial neural networks
Jonathan Baxter
Complex systems, 313-326 (1993) .
1993
Abstract
In this paper we investigate a neural network model in which weights between computational nodes are modiffied according to a local learning rule. To determine whether local learning rules are sufficient for learning, we encode the network architectures and learning dynamics genetically and then apply selection pressure to evolve networks capable of learning the four boolean functions of one variable. The successful networks are analysed and we show how learning behaviour emerges as a distributed property of the entire network. Finally the utility of genetic algorithms as a tool of discovery is discussed.
Ratings & reviews
100
75
0
1
1
Notice: Undefined index: publicationsCaching in /www/html/epistemio/application/controllers/PublicationController.php on line 2240
Share comment